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Abstract— High Efficiency Video Coding (HEVC) can signif-
icantly improve the compression efficiency in comparison with
the preceding H.264/Advanced Video Coding (AVC) but at the
cost of extremely high computational complexity. Hence, it is
challenging to realize live video applications on low-delay and
power-constrained devices, such as the smart mobile devices.
In this article, we propose an online learning-based multi-stage
complexity control method for live video coding. The proposed
method consists of three stages: multi-accuracy Coding Unit
(CU) decision, multi-stage complexity allocation, and Coding Tree
Unit (CTU) level complexity control. Consequently, the encoding
complexity can be accurately controlled to correspond with the
computing capability of the video-capable device by replacing
the traditional brute-force search with the proposed algorithm,
which properly determines the optimal CU size. Specifically,
the multi-accuracy CU decision model is obtained by an online
learning approach to accommodate the different characteristics
of input videos. In addition, multi-stage complexity allocation is
implemented to reasonably allocate the complexity budgets to
each coding level. In order to achieve a good trade-off between
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complexity control and rate distortion (RD) performance, the
CTU-level complexity control is proposed to select the optimal
accuracy of the CU decision model. The experimental results
show that the proposed algorithm can accurately control the cod-
ing complexity from 100% to 40%. Furthermore, the proposed
algorithm outperforms the state-of-the-art algorithms in terms
of both accuracy of complexity control and RD performance.

Index Terms— Complexity allocation, complexity control, high
efficiency video coding, online learning, random forest.

I. INTRODUCTION

OVER the last decade, the demand for live video services
has seen explosive growth, especially after the popularity

of video-capable mobile devices (smartphones and laptops,
etc.). Live video applications have been widely utilized in
various fields such as remote education, online games, video
conferencing, and online video chats, owing to their ability to
provide real-time user experience. Meanwhile, the resolution
of live videos has been continuously increasing because High
Definition (HD) and Ultra-HD (UHD) video services can
provide users with high quality immersive experience and
more realistic visual enjoyment. However, the amount of data
enormously increases which introduces new challenge to live
video transmission. Therefore, the Joint Collaborative Team
on Video Coding (JCT-VC) developed the High Efficiency
Video Coding (HEVC) standard [1]. Compared with the pre-
ceding H.264/Advanced Video Coding (AVC) standard [2],
HEVC can achieve 50% transmission bitrate reduction while
maintaining the same subjective visual quality [3]–[5]. Unfor-
tunately, the encoding performance gain is at the cost of inten-
sive computational complexity. Compared with H.264/AVC,
the computational complexity of HEVC has increased by
253% on average [3].

So far, many researchers have focused on low complexity
encoding optimization [6]–[21]. In general, these low com-
plexity encoding algorithms aim to save as much encoding
time as possible with negligible Rate Distortion (RD) per-
formance degradation. In principle, these algorithms aim to
predict the optimal encoding parameters instead of performing
a brute-force RD Optimization (RDO) search. However, low-
complexity encoding algorithms have certain limitations:

1) The computational complexity reduction is not neces-
sarily adaptable to video-capable devices with different
computing capabilities because these fast algorithms aim
to ensure the encoding efficiency.

2) Low-complexity encoding algorithms cannot flexibly
and effectively achieve a tunable trade-off between
computational complexity and encoding efficiency based
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Fig. 1. Illustration of the relation between the visual quality and complexity
control. When the devices are with sufficient computing resource, video is
encoded with high quality. Once the computing resource is insufficient, video
is encoded with low computational complexity (low quality).

on the computing capabilities of different video-capable
devices.

3) The computational complexity reduction of the fast
encoding algorithm fluctuates greatly depending on
the video content. In other words, the fast encoding
algorithm cannot guarantee that all video sequences
are effectively encoded under computational complexity
constraint.

In addition, live video applications are usually performed
on mobile devices with different computing capacities and
constrained power. Therefore, the tunable trade-off between
encoding complexity reduction and compression efficiency is
necessary for the encoding algorithm to adapt to different
devices. Fig. 1 illustrates the relation between the visual
quality and computational consumption in which the per-
centage is calculated by using the encoding time of original
encoding platform as benchmark. Clearly, if more computa-
tional power is allocated for encoding, CU splitting is more
elaborate. Consequently, the prediction is more accurate, and
the video quality improves. Actually, complexity control algo-
rithms have attracted increasing attention from both academia
and industry with the aim of addressing these problems.
The complexity control algorithm attempts to obtain optimal
encoding efficiency for a given expected complexity, which
can be adaptively set according to the computing capabili-
ties of different video-capable devices. To achieve this goal,
we propose an online learning-based multi-stage complexity
control method. The framework of the proposed method is
shown in Fig. 2. In this method, a random forest-based multi-
accuracy Coding Unit (CU) decision model is first obtained
by the online learning approach. Subsequently, multi-stage
complexity allocation is designed to assign the complexity
budgets to four coding levels, segment level, Group of Pictures
(GOP) level, frame level, and Coding Tree Unit (CTU) level.
It is noted that the first frame of each segment (update frame)
is encoded by the original HEVC encoder and used to online
update the parameters of the multi-stage complexity allocation
model. Finally, a CTU-level complexity control method is
proposed to control the complexity reduction of each CTU
by adjusting the accuracy of the CU decision model. The
contributions of the proposed method are summarized as
follows:

1) To our best knowledge, we are the first to adopt an online
learning technique to overcome the complexity control
problem in video coding by reasonably adjusting the
accuracy of the CU decision model.

2) Differing from existing complexity control meth-
ods [22]–[30], the proposed method adopts a multi-
stage complexity allocation strategy to achieve a better
trade-off between control accuracy and RD performance.
This strategy enables the complexity budgets to be more
reasonably allocated to each level.

3) The CTU-level complexity control is well designed to
make the actual encoding complexity of each CTU
adaptive to the expected complexity. A depth-complexity
model is proposed to achieve a good trade-off between
computational complexity and RD performance.

4) A feedback mechanism is proposed to eliminate the
complexity control error caused by inappropriate com-
plexity allocation.

The remainder of this article is organized as follows.
Section II introduces motivation and related work. Section III
details the random forest-based multi-accuracy CU decision
model. Section IV describes the scheme for multi-stage com-
plexity control. Section V presents the experimental results
and discussions. Finally, Section VI concludes the paper.

II. MOTIVATION AND RELATED WORKS

A. Encoding Complexity Analysis

This work aims to achieve complexity control for live video
coding based on the HEVC platform, so it is expected to
adopt the low-delay P main configuration [31] to achieve
low encoding time delay. In the default Low-delay Hierar-
chical Coding Structure (LDHCS) of HEVC, all frames in
a video sequence are divided into a series of GOPs. Note
that the first GOP contains only one Intra (I) frame. Fur-
thermore, the number corresponding to each frame indicates
the encoding order denoted as Picture Order Count (POC)
in the LDHCS. By contrast, each of the subsequent GOPs is
composed of four Prediction (P) frames as shown in Fig. 3.
The Quantization Parameter (QP) varies with the layer, which
indicates that frames in different layers have different com-
putational complexity. Thus, it is necessary to adopt different
complexity allocation strategies for frames in different layers.

In HEVC, the Quad-Tree (QT) partition structure is one
of the main contributors to compression efficiency gain, with
CU partition and multiple prediction modes selection as the
core technologies. In the main profile of HEVC, each frame
is partitioned into multiple CTUs with the size of 64 × 64
pixels. A CTU can be further partitioned into multiple CUs
via the QT partition structure, as shown in Fig. 4. The optimal
coding depths of the CUs in each CTU are determined by
recursive RDO search, including a top-down checking process
and a bottom-up pruning process. Actually, the recursive CU
checking is primarily responsible for the high computational
complexity in the brute-force RDO search. For a CTU, it is
necessary to check 85 CUs, which include 1, 4, 42, and 43 CUs
with depths of 0, 1, 2, and 3, respectively. However, in the
optimal partition combination for a CTU, only certain CUs are
selected, from 1 (if the 64×64 CU is not partitioned) to 64 (if
the whole CTU is partitioned into 8×8 CUs) [18]. This means
that at least 21 CUs and at most 84 CUs do not need to be
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Fig. 2. Overview of online learning-based multi-stage complexity control for live video coding.

Fig. 3. Hierarchical coding structure under low-delay P configuration [31].

Fig. 4. Quad-tree coding structure in HEVC Inter coding.

checked as a result of the efficient prediction of the CU depth
decision. Eliminating redundant RDO search (unnecessary CU
checking), achieving expected computational complexity, and
maintenance of optimal RD performance are the motivation of
this work.

We have statistically analyzed the encoding complexity of
HEVC at the GOP layer. Five video sequences with different
contents and resolutions were tested on the HM-16.0 under the
low-delay P main configuration. Fig. 5 shows the frame-level
complexity of tested video sequences. Clearly, the encoding
complexity varies with the video resolution and video contents.
More importantly, the encoding complexity of these sequences
regularly vary, with a period of 4 frames. In other words,

the encoder approximately takes the same time to encode each
GOP. This phenomena can be used to achieve the GOP-level
complexity allocation.

In addition, frames with same Relative POC (RPOC) in
different GOPs are encoded with almost the same complexity.
To facilitate the analysis of the frame-level encoding complex-
ity, we defined the complexity ratio of the i -th frame in the
G-th GOP as

βFrame
G (i) = T Frame

G (i)/T G O P
G

= T Frame
G (i)

/ 4∑
i=1

T Frame
G (i), (1)

where T Frame
G (i) is the encoding time of the i -th frame in the

G-th GOP and i = 1, 2, 3, 4, and T G O P
G is the encoding time

of G-th GOP.
Fig. 6 shows the complexity ratios of five test sequences.

We have two important observations: 1) βFrame
G (i) of dif-

ferent sequences with same QP are approximately same;
2) βFrame

G (i) of the same sequence weakly varies with the
value of QP. Therefore, the frame-level complexity allocation
can be transformed into the problem of obtaining βFrame

G (i)
in a GOP.

B. Related Works
Many efforts have previously been made for encoding com-

plexity optimization. In general, the corresponding researches
can be divided into two categories: 1) complexity reduction
and 2) complexity control.

With regard to complexity reduction, many researchers aim
to optimize the flexible QT partitioning structure, which is
mainly responsible for the high computational complexity
in HEVC. The basic idea is to predict the optimal CU
depth instead of conducting brute-force RDO search [6]–[9].
Specifically, Shen et al. [6] proposed an efficient CU depth
decision algorithm, in which the texture complexity and high-
value coded information of temporal neighboring CUs are used
to narrow the CU depth search range. In [7], a prediction mode
and CU depth decision scheme are proposed, in which the RD
cost of the Skip/Merge mode and parent CU prediction mode
are utilized to speed up the process of CU decision. Moreover,
some works on fast PU mode decision and Transform Unit
(TU) size decision have been proposed to reduce the encoding
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Fig. 5. Frame-level complexity from five test video sequences. (a) ParkScene; (b) PartyScene; (c) BQSquare; (d) Vidyo1; (e) ChinaSpeed.

Fig. 6. Frame-level complexity ratio for each GOP. (a) ParkScene (QP27); (b) PartyScene (QP27); (c) BQSquare (QP27); (d) Vidyo1 (QP27); (e) ChinaSpeed
(QP27); (f) ParkScene (QP37); (g) PartyScene (QP37); (h) BQSquare (QP37); (i) Vidyo1 (QP37); (j) ChinaSpeed (QP37).

complexity [10]–[13]. For instance, Ryu and Kang [10] uti-
lized random forest to estimate the intra-prediction mode of
PU and to achieve encoding complexity reduction by avoiding
the complex RDO search of a number of unnecessary modes.
In addition, some algorithms aim to accelerate other modules
in HEVC, such as fast motion estimation [14], fast reference
frame selection [15], and low-complexity in-loop filtering [16].
Most recently, machine learning has become a hotspot and has
also been applied in video coding to obtain more encoding
complexity reduction [17]–[21]. For example, Xu et al. [18]
proposed a deep learning-based CU depth decision algorithm
to reduce the computational complexity of both intra and inter
coding in HEVC, in which convolutional neural network and
long- and short-term memory network are applied to predict
the optimal CU partition.

Compared with the large number of complexity reduction
algorithms, research on encoding complexity control is still
at the initial exploratory stage. In general, the main ideas of
existing complexity control methods can be divided into three
categories: 1) process simplification, 2) encoding parameter
adjustment, and 3) complexity allocation. As for encoding
process simplification, the basic goal is to achieve the expected
complexity by early skipping some encoding parameters deci-
sion or early terminating some exhaustive traversal processes.
Encoding parameter adjustment aims to establish a parameter-
complexity model and control the complexity by adjusting
one or more encoding parameters. By contrast, complexity

allocation aims to ensure that the actual encoding complexity
satisfies the requirement by reasonably allocating the com-
plexity resources. Actually, in order to achieve the expected
complexity, the existing works may adopt one or more of these
ideas.

Specifically, Corrêa et al. [22], [23] utilized the temporal
correlation between two frames to predict the maximum CU
partition depth. They classify frames into two categories:
unconstrained and constrained. The maximum depth in con-
strained frames is limited by the actual maximum partition
depth of the corresponding neighboring CTUs in the nearest
unconstrained frame. In this way, the expected complexity can
be achieved by adjusting the number of constrained frames.
However, the RD performance degradation of sequences with
complex texture is significant. Similarly, another proposed
algorithm [24] also achieves the expected complexity by
constraining the maximum CU partition depth. This method
explores the relationship between visual distortion and maxi-
mum CU depth to predict the number of CTUs with different
depths. Finally, the maximum depths can be allocated to
each CTU according to their saliency weights. However,
this method only achieves complexity control at the CTU
level and the complexity control accuracy is not satisfactory.
In order to improve the control accuracy, Deng et al. [25]
further exploited a hierarchical complexity control method.
In this approach, frame-level complexity allocation strategy
is proposed, and the coding bit consumption of the previous
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frame is utilized to allocate the complexity budgets to the
current CTU. Jimenez-Moreno et al. [26] followed a different
approach by proposing parameter adjustment-based complex-
ity control for HEVC, in which a feedback mechanism is
employed to achieve the expected complexity by adjusting
the thresholds of a CU decision termination method. A rate-
complexity-distortion model was suggested based on a large
number of experiments [27], [28]. Different parameters have
been tested to establish the model, which can quantify the
relationship between the encoding efficiency and complex-
ity. In this way, the expected complexity can be achieved
by adjusting the parameters. Unfortunately, the complexity
reduction fluctuates greatly as the video contents change.
Most recently, Zhang et al. [29] proposed a CTU-level com-
plexity control method that adaptively changes the partition
depth for each CTU. A CTU-level complexity estimation and
mapping model was introduced to improve the complexity
control accuracy. Then, the complexity budgets are allocated
to each CTU according to its estimated complexity. Moreover,
Zhang et al. [30] subsequently proposed a complexity control
strategy for HEVC intra coding, in which the framework is
similar to the method in [29].

Different from existing algorithms, we adopt an online
machine-learning method to overcome the complexity control
problem in video coding by reasonably adjusting the accuracy
of the CU decision model. To achieve better control accuracy,
the proposed method adopts a multi-stage complexity alloca-
tion strategy to allocate the complexity budgets to each level
more reasonably. In order to effectively and flexibly achieve a
tunable trade-off between the RD performance and encoding
complexity, a CTU-level complexity control scheme is well
designed. Moreover, a feedback mechanism is introduced to
eliminate the control error caused by improper complexity
allocation.

III. MULTI-ACCURACY CU DECISION MODEL

In fact, an effective complexity reduction strategy is the
precondition for achieving complexity control in video cod-
ing [24]. According to the analyses in Section II-A, the brute-
force RDO search-based CU decision is the main source
of encoding complexity in HEVC inter coding. Therefore,
we reduce the complexity by replacing the RDO search
with a multi-accuracy CU decision model to determine the
optimal CU depth. This model jointly utilizes an early skip
model (ES) and an early termination model (ET) for effi-
cient CU decision. It is noteworthy that the design of multi-
accuracy CU decision aims to make the complexity reduction
controllable.

A. Feature Extraction for CU Decision Model
Feature extraction plays an important role in the perfor-

mance of classifiers, because they represent the attributes
to distinguish different categories. In addition, the compu-
tational complexity of feature extraction should be taken
into consideration when the classifier is introduced into a
live video coding system. The CU decision in HEVC inter
coding mainly depends on the texture of video content, motion
and the context of spatiotemporal neighboring information.
Therefore, we select 11 features for the proposed CU decision
model.

1) Motion Information: As the CU decision in HEVC inter
coding highly depends on the motion of video content, two
motion features are introduced to train the CU decision model.
Specifically, the motion vectors of Inter 2N × 2N (denoted as
xMV ) is selected for the ET classifier, and the Hash value
(denoted as xHash) is used to train the ES classifier. Note
that the Hash value is used to measure the similarity between
the current CU and its co-located CU, which can indicate the
motion difference in the temporal domain to some extent. The
Hash value is defined as

H =
7∑

m=0

7∑
n=0

⌈
1

64
×

⌊
f (m, n)Cur

f Cur

⌋
·
⌊

f (m, n)Col

f Col

⌋⌉
, (2)

where �·� and �·� represent upward and downward rounding,
respectively. f (m, n)Cur and f (m, n)Col represent the pixel
value at (m, n) of the current CU and its co-located CU after
being sampled to 8 × 8 respectively. Moreover, f Cur and
f Col indicate the pixel mean of f (m, n)Cur and f (m, n)Col ,
respectively.

2) Texture Information: The HEVC encoder achieves high
encoding efficiency by encoding the textured regions using a
smaller CU size, whereas the smooth regions are encoded with
a larger CU size. In this work, texture complexity (denoted
as xT C ), direction complexity (denoted as xDC), and texture
divergence between sub-CUs (denoted as xSubCU ) are selected
as features. Specifically, the texture complexity of each CU is
defined as

T C(�) =
∑

(i, j )∈�

f (i, j)2 − 1

N�
[

∑
(i, j )∈�

f (i, j)]2, (3)

where � is the block of pixels of the current CU, N� is the
number of pixels in �, and f (i, j) is the luminance component
of the pixel at (i, j). The direction complexity is defined as

DC(�) = 1

N�

∑
(i, j )∈�

(|G Hor(i, j)| + |GV er (i, j)|
+ |G45(i, j)| + |G135(i, j)|), (4)

where Gn (i, j) is the Sobel gradient and is calculated by

Gn(i, j) = Sn ∗ F, (n = H or, V er, 45◦, 135◦), (5)

where Sn represents the four angular Sobel operators for the
pixel at (i, j), and F is the 3×3 pixel matrix centered at (i, j).

Moreover, the texture divergence is obtained by

D(�) = 1

NsubCU

∑
Ci∈�

⎛
⎝T C(Ci )− 1

NsubCU

∑
Ci∈�

T C(Ci )

⎞
⎠2

i = {1, 2, 3, 4}, (6)

where Ci is the four sub-CUs of the current CU, and NsubCU
is the number of sub-CUs of the current CU, which is equal
to 4.

3) Coding Information of the Current CU: In order to
exploit the features highly related with the CU decision, two
stage CU decision models in this work (ES and ET models)
are conducted after the checking Skip/Merge mode. Therefore,
the coding information can be utilized to improve the coding
performance. These selected features contain the RD cost
of Skip/Merge, coding bits of Skip/Merge, coding flag of
Skip, and coded block flag. They are denoted as xR DCost,
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TABLE I

PERFORMANCE COMPARISON BETWEEN COMMON CLASSIFIERS

xBits , xSkipFlag and xC B F , respectively. Generally, CU tends
to select non-split as the best, when xR DCost and xBits are
small. xSkipFlag and xC B F are also highly related with the
CU decision, because they indicate the coding performance of
the current depth.

4) Context Information: There is highly temporal correla-
tion between the current frame and its reference frame, thus we
select two temporal features. The first is the difference between
the current CU depth and the maximum partition depth of
its co-located CTU (denoted as x�Depth). The second is the
difference of the QP value between the current frame and the
reference frame in position 0 of the reference list 0 (denoted as
x�Q P). These two features can indicate the similarity between
the current CU and its co-located CU, and the HEVC encoder
tends to select depth of the co-located CU as the best depth
of the current CU when x�Depth and x�Q P are lower than a
certain threshold.

B. Classifier Selection for CU Decision Model

Various classifiers have been introduced into CU deci-
sion model of HEVC, such as support vector machine
(SVM), Bayesian method and back propagation neural net-
work (BPNN). As we know, the prediction accuracy is a
key factor for the classifier selection. In addition, the time
overhead of training should also be taken into consideration,
since the proposed model is obtained by online learning
for accommodating different characteristics of input videos.
In order to select the optimal classifier for this task, we have
compared the prediction accuracy and online training speed
of different classifiers, including SVM, BPNN, k-Nearest
Neighbor (kNN), Bayesian and Random Forest (RF) [32].
Table I lists the experimental results, in which PA and TT
indicate prediction accuracy and training time of classifier,
respectively. Obviously, RF and SVM have good performance
in terms of prediction accuracy. Moreover, the complexity
overhead of model training of RF is significantly less than that
of SVM. In addition, deep learning-based classifiers cannot
meet the speed requirement of online learning task. Thus, RF

is selected in this work by comprehensive consideration of
both prediction accuracy and complexity overhead.

C. Partition Function Optimization for CU Decision Model

In this work, we exploit an effective partition function by
learning the representative features in a randomized tree to
generalize the rules of the HEVC encoder. Generally, random
forest T= {Tn}T

t=1 is an ensemble classifier constructed by T
binary random decision trees Tn [10]. Each random decision
tree recursively separates the sample into child nodes on the
left or right until a leaf node corresponding to the posterior
distribution over the classes is reached. Given a node φi and
its sample set Di = {(x1, y1), (x2, y2), · · · , (xN , yN )} where
{xi , yi } is the i -th sample, xi ∈ 	d is the feature vector and
yi is the label. The node needs to make an optimal binary
decision, achieved by a partition function:

hψ(x, ψi ) : 	d ×� → {0, 1} (7)

where ψi is the partition parameters of the node φi , and �
is the set of all partition parameters. Moreover, the outputs
1 and 0 represent the child nodes on the right and the left to
be selected after partitioning, respectively.

In order to further improve the performance of the proposed
CU decision model, the partition of the node φi is measured
by the Gini coefficient [33], which is calculated as

G(Di ) =
K∑

k=1

pi,k(1 − pi,k) = 1 −
K∑

k=1

p2
i,k

= 1 −
K∑

k=1

(
Ni,k

Ni
)
2

, (8)

where Ni is the number of elements of Di , pi,k is the
probability of elements belonging to class k, and Ni,k is the
number of elements belonging to class k in Di . Moreover, K
is 2 in the binary decision. Lastly, the best partition of the
node φi is determined by the Gini coefficient of a feature �
when Di is divided into two subsets DL

i and DR
i in the child

note on the left and the right. It can be represented as

GSplit (Di ,�i
ξ ) = N L

i

Ni
G(DL

i )+
N R

i

Ni
G(DR

i ) (9)

where ξ is a threshold determined by learning, N L
i and N R

i are
the numbers of elements of DL

i and DR
i , respectively. Based

on (8), (9) can be rewritten as

GSplit (Di ,�i
ξ )

= N L
i

Ni
[1 −

K∑
k=1

(
N L

i,k

N L
i

)2

] + N R
i

Ni
[1 −

m∑
i=1

(
N R

i,k

N R
i

)2

]

= 1 − 1

Ni

(
1

N L
i

×
K∑

k=1

(
N L

i,k

)2 + 1

N R
i

×
K∑

k=1

(
N R

i,k

)2
)
(10)

where N L
i,k and N R

i,k are the numbers of elements belonging
to class k in DL

i and DR
i , respectively.

In this work, the CU decision model is obtained by an online
learning approach to accommodate the different characteristics
of video sequences. However, the proportion of positive and
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negative samples in the training set obtained by online col-
lecting is extremely uneven, and seriously affects the encod-
ing performance of the CU decision model. Consequently,
we introduce the class weight (denoted as Wk) to enhance the
encoding performance of the CU decision model. The class
weight is utilized to improve the prediction accuracy of the
class with smaller samples by specifying more severe penalties
for the misclassification of small class samples. Considering
the difference in the number of samples between classes,
the class weight of the node φi is normalized as

δi,k = Wk

Ni,k

/
K∑

k=1

Wk

Ni,k
(11)

Then, combining (10) with (11), the partition function can be
represented as

GSplit (Di ,�
ξ , δ)

= 1 − 1

Ni

(
1

N L
i

K∑
k=1

(
δi,k · N L

i,k

)2 + 1

N R
i

K∑
k=1

(
δi,k · N R

i,k

)2
)
.

(12)

Moreover, according to (11), N L
i and N R

i can be transformed
as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
N L

i =
K∑

k=1

δi,k × N L
i,k

N R
i =

K∑
k=1

δi,k × N R
i,k .

(13)

Thus, the function can be rewritten as

GSplit (Di ,�
ξ , δ)

= 1 − 1

Ni

⎛
⎜⎜⎜⎝

K∑
i=1

(
δi,k × N L

i,k

)2

K∑
i=1

δi,k × N L
i,k

+

K∑
i=1

(
δi,k × N R

i,k

)2

K∑
i=1

δi,k × N R
i,k

⎞
⎟⎟⎟⎠,
(14)

where δ = (δi,0, δi,1) is the set of class weights. In this way,
the encoding performance of the proposed random forest-
based CU decision model can be adjusted by changing the
class weight.

In the prediction stage, each internal node randomly selects
a fixed number of features and their corresponding thresholds.
In order to balance the encoding performance and compu-
tational complexity, the number of features of each node is
set as 3. The decision criterion of the optimal leaf node is
represented as

y∗ = arg min
yi∈Y

(GSplit (Di ,�
ξ , δ)). (15)

It is noteworthy that the final decision is made by obtaining
the results of all the trees, i.e., by majority voting.

D. Multi-Accuracy Optimization for CU Decision Model

Because samples with different categories usually overlap
with each other, it is difficult to find a perfect classifier
to distinguish these two categories without misclassification.
Basically, there are two kinds of misclassification: 1) the

CUs belonging to Class 0 are misclassified into Class 1, and
2) CUs belonging to Class 1 are misclassified into Class 0.
Theoretically, the RDO search of the CUs belonging to
Class 0 should be early terminated/skipped in the proposed
CU decision model. However, the RDO search will be not
terminated/skipped duo to the first kind of misclassification.
Consequently, the amount of encoding time saving is reduced.
It should be noted that the first kind of misclassification does
not result in any RD performance loss because the full RDO
search is conducted, which is consistent with the original
HEVC encoder. For the second kind of misclassification,
the RDO search of these misclassified CUs is early terminated
by the ET model or early skipped by the ES model. Therefore,
it degrades the RD performance. Based on the above analysis,
the correct classification of CUs belonging to Class 0 is
beneficial to achieve further complexity reduction, whereas
the correct classification of CUs in Class 1 can maintain the
RD performance. In order to measure the classification per-
formance of the CU decision model, we define the prediction
accuracies of Class 0 and Class 1 (denoted as P A0 and P A1,
respectively)

P A0 = K00

K01 + K00
, P A1 = K11

K11 + K10
(16)

where K00 is the number of CUs correctly classified as Class
0, K01 is the number of the first misclassified CUs, K10 is
the number of the second misclassified CUs, and K11 is the
number of CUs correctly classified as Class 1.

Further, extensive experiments have been conducted to
quantify the influence of the class weights (W0 and W1)
on the proposed CU decision models at each depth level.
In these experiments, W0/W1 ranges from 1:10 to 10:1, and
the step is 1. The relationship between the class weights and
prediction accuracies of models at different depth levels are
shown in Fig. 7. As W0/W1 increases, the penalty for the
misclassification of CUs belonging to Class 0 increases; thus,
P A0 of each model increases, whereas P A1 decreases. This is
consistent with the aforementioned analysis. Based on the rela-
tionship between the class weight and prediction accuracy of
the proposed CU decision model, we can obtain three models
with different prediction accuracies (high, medium, and low
accuracy). Specifically, the high-accuracy CU decision model
achieves smaller RD performance loss at the cost of lower
complexity reduction. In contrast, the CU decision model with
low prediction accuracy reduces the complexity to a larger
extent, but the RD performance loss is larger. In addition,
the CU decision model with medium prediction accuracy
maintains a more acceptable trade-off between complexity
reduction and RD performance. The selected class weights
for the CU decision models with different accuracies and
their prediction accuracies are listed in Table II. Based on the
design of multi-accuracy CU decision, CTU-level encoding
complexity control can be achieved by reasonably selecting
the prediction accuracy of the CU decision model.

IV. MULTI-STAGE COMPLEXITY CONTROL SCHEME

In order to achieve accurate sequence-level complexity
control, the proposed complexity control method contains
two stages: multi-stage complexity allocation and CTU-level
complexity control. The coding structure of the proposed
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Fig. 7. Prediction accuracy of different classifiers. (a) ES(0) (b) ES(1)
(c) ES(2) (d) ET(0) (e) ET(1) (f) ET(2).

TABLE II

SELECTED PARAMETERS FOR CLASSIFIERS

method is shown in Fig. 8. We define all frames between two
control model updating frames as a segment. For an input
video sequence, training frames (the first 12 P frames) are
coded by original HEVC encoder for collecting the train-
ing data and online training the multi-accuracy CU decision
model. After obtaining the multi-accuracy CU decision model,
the first frames of each segment (updating frames) are also
coded by original encoder for updating the parameters of
multi-stage complexity control model. Finally, the constrained
frames are coded by the multi-accuracy CU decision model to

Fig. 8. Coding structure of the proposed method.

reduce the total encoding complexity to approach the expected
complexity. In addition, a feedback mechanism is used to
eliminate the complexity control error caused by inappropriate
complexity allocation.

A. Multi-Stage Complexity Allocation

In this article, complexity allocation is implemented on four
levels: segment, GOP, frame, and CTU.

1) Segment-Level Complexity Allocation: Based on the
analysis in Section II-A, each GOP in a sequence consumes
approximately the same encoding time when there is not the
scene content change. Meanwhile, the encoding complexity
of a GOP can be derived by a certain frame and its com-
plexity ratio. In order to achieve accurate complexity control,
the first frame in each segment is used to update the estimated
complexity of the current segment. Therefore, the encoding
complexity of the current segment can be calculated as

T Seg
s = Z × T G O P

s,g = Z × T Frame
s,g,1

βFrame
s,g,1

(17)

where Z is the number of GOPs in a segment, T G O P
s,g is

the encoding time of the first GOP in the current segment,
T Frame

s,g,1 is the encoding time of the first frame in the current
segment, and βFrame

s,g,1 is the complexity ratio of the first
frame. Mathematically, the encoding complexity of the entire
sequence can be estimated as

T Seq
E S =

13∑
f =1

T T F
f +

S∑
s=1

T Seg
s

=
13∑

f =1

T T F
f

︸ ︷︷ ︸
Complexity of TF

+
S∑

s=1

Z × T Frame
s,g, f

βFrame
s,g,1︸ ︷︷ ︸

Complexity of S segments

. (18)

In this article, we adopt a complexity allocation strategy
that if the previous segments consume more or fewer com-
plexity than the expected complexity, then the current segment
should be allocated fewer or more complexity accordingly. The
expected complexity for the sth segment is calculated by

T
Seg
s = 1

S − s + 1
· (T Seq

E S · rtarget −
13∑

f =1

T T F
f −

s−1∑
x=1

T Seg
x ),

(19)

where rtarget is the expected complexity ratio, T T F
f is the

encoding time of training frames, and S is the number of
segments.
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2) GOP-Level Complexity Allocation: Based on the statis-
tical analysis in Section II-A, we can allocate the leftover
complexity budgets to the remaining GOPs in the current
segment by averaging. Thus, GOP-level expected complexity
is calculated by

T
G O P
z = 1

Z − z + 1
× (T

Seg
s − T Seg

Coded), (20)

where T
G O P
z is the expected complexity of the z-th GOP in

the current segment, and T Seg
Coded is the encoding time of the

previous z − 1 GOPs in the current segment.
3) Frame-Level Complexity Allocation: The frame-level

expected complexity can be determined by the complexity
ratio, since the frame complexity ratios of different sequences
with same QP are approximately same according to the
statistical analysis in Section II-A. Mathematically, it can be
calculated as

T
F
r = T

G O P
z − T G O P

coded∑
{ ALL Not Coded CTUs}

βFrame
r

× βFrame
r , (21)

which aims to allocate the leftover complexity budgets to the
remaining frames according to the weight of each frame.

4) CTU-Level Complexity Allocation: Similar to frame-
level complexity allocation, the CTU-level complexity also
aims to allocate the leftover complexity budgets to the remain-
ing CTUs according to the weight of each CTU. The target
CTU-level complexity is calculated as

T
CT U
n = T

F
r − T F

Coded∑
{ ALL Not Coded CTUs}

wCT U
n

×wCT U
n , (22)

where T F
Coded is the complexity of coded CTUs in the current

frame, and wCT U
n is the weight of the current CTU.

B. CTU-Level Complexity Control

In Section IV-A, we introduced an approach for allocating
complexity budgets to the four coding levels. However, we still
cannot accurately code each sequence under the expected
complexity if we only know the allocated complexity. The aim
of CTU-level complexity control is to reduce the complexity
of each frame to achieve the expected complexity, which is
based on the multi-accuracy CU decision model introduced in
Section III. The complexity control strategy can be expressed
by

arg min
{A}

∣∣∣∣∣
N∑

n=1

T CT U
n − T

F
r

∣∣∣∣∣, (23)

where N is the number of CTUs in each frame, T CT U
n is the

actual encoding time of the n-th CTU in the current frame,
and A is the set of accuracy of the CU decision models used
to encode different CUs in a frame. To solve (23), we define
the complexity control error as

en =
N∑

n=1

T
CT U
n −

N∑
n=1

T CT U
n

=
N∑

n=1

(T
F
r × wCT U

n

/
N∑

n=1

wCT U
n )−

N∑
n=1

T CT U
n , (24)

Algorithm 1 Multi-Stage Complexity Control

where en indicates sum of the control errors caused by the
previous N CTUs in the current frame.

Consequently, the complexity control is transformed to
solve the problem of eliminating the controlling error en .
In this article, we eliminate the en by selecting the prediction
accuracy of the CU decision model. The strategy we adopt
determines that, if the previous CTUs consume more or less
complexity than the expected complexity, then the current
CTU should consume less or more complexity accordingly.
As introduced in Section III-D, the high-, medium- and low-
accuracy models can be used to modulate the trade-off between
the complexity reduction and RD performance. Therefore,
the optimal accuracy selection in the proposed algorithm can
be expressed as

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ALow en ≤ −MT
AMid −MT < en ≤ 0
AHigh 0 < en ≤ MT
AOri MT < en

(25)

where ALow, AMid , AHigh , and AOri are the CU decision
models with prediction accuracy of low, medium, high, and
original, respectively. Moreover, MT is the average encoding
time of CTUs in the training frames.
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Fig. 9. Estimated and actual frame-level complexity ratio under different QPs. From top to bottom: RaceHorses, BQMall, ParkScene, PartyScene From Left
to right: βFrame

1 , βFrame
2 , βFrame

3 , βFrame
4 .

Overall, the parameters learning of the proposed multi-stage
complexity control can be described as Algorithm 1.

C. Parameters Determination

1) Determination of βFrame
r : Based on the statistical analy-

sis in Section II-A, the complexity ratio βFrame
r varies with

the temporal layer in the LDHCS. Moreover, βFrame
r is also

related with QP. In order to determine the value of βFrame
r ,

five sequences were encoded with different QPs under the
low delay P main configuration. Fig. 9 shows each βFrame

r
and its estimated curve. Clearly, the relationship between each
βFrame

r and QP can be fitted with a parabolic curve, which is
represented as

βFrame
r = αr × Q2 + ϕr × Q + τr ,r ∈ {1, 2, 3, 4}, (26)

where αr , ϕr , and τr are constants, and Q is the value of QP.
Table III lists the values of these parameters.

2) Determination of wCT U
n : The weight of each CTU is

determined by the mean CTU partition depth (MD), which is
calculated as

M D =
3∑

d=0

nd × d

2d+1 , (27)

TABLE III

PARAMETERS FOR COMPLEXITY RATIO

where nd is the number of CUs with depth of d in the current
CTU. To accurately determine the relationship between the
weight of each CTU and M D, the conditional probability
P(d|M D) is defined, where d represents the optimal depth of
the current CTU. For instance, P(d = 1|M D < 0.5) indicates
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TABLE IV

THE P(d|M D) FOR DIFFERENT VIDEOS

the probability of the event that the optimal depth of the
current CTU is 1 when its M D is less than 0.5. Table IV
presents the P(d|M D) for three different videos. Clearly,
the CTUs with a smaller M D are highly probable to have
a lower optimal depth d . For instance, when M D is less than
0.5, the CTU has a 100% probability of its optimal depth being
0 for three test sequences. In other words, the current CTU
only needs to conduct the RDO search at a depth level of 0.
Based on the statistics in Table IV, the weight is determined
by

wCT U
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C R0 M D ≤ 0.5
C R1+C R2 0.5<M D ≤1.5
C R1+C R2+C R3 1.5<M D ≤2.5
C R2+C R3 2.5<M D,

(28)

where C Rd represents the complexity ratio consumed by RDO
search at depth level d . It can be calculated by

C Rd = T T F
d

/
3∑

d=0

T T F
d , (29)

where T T F
d is the average encoding time consumed by RDO

search at depth level d in the training frames. It should be
noted that, because the depth information of the current CTU
can only be available after coding, we utilize the mean CTU
depth of the co-located CTU M DCol to derive the M D of the
current CTU. Thus, M D can be calculated as{

M D = M DCol +�M D

�M D = M DST L − M DRF ,
(30)

where M DST L is the average depth of the frames at the same
temporal layer with the current frame (STLF), and M DRF is
the average depth of the frames that are the reference frame
of STLFs.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

This section presents the extensive experiments that were
conducted to evaluate the performance of the proposed
method. The proposed method was implemented on the HEVC
test platform HM-16.0. All experiments were conducted

under the comment test conditions (CTC) of JCT-VC. The
low-delay P main configuration was used. The accuracy of the
complexity control was evaluated by control error CE, which
is calculated as

C E = 1

4

4∑
i=1

∣∣∣∣∣T Q Pi
j

T Q Pi
H M

− rtarget

∣∣∣∣∣ × 100%, (31)

where T Q Pi
H M and T Q Pi

j are the encoding time of the original
HM and j -th algorithm, respectively. rtarget is the expected
complexity ratio. Moreover, the RD performance was eval-
uated by the Bjøntegaard Delta Peak Signal-to-Noise Ratio
(BDPSNR) and Bjøntegaard Delta Bitrate (BDBR) [34].

B. Control Accuracy of the Proposed Method

The complexity control performance of the proposed
method under different target complexities is listed in Table V.
It can be observed that CE for different sequences under
80% expected complexity range from 0.03% to 4.43%, and
1.30% on average. When the expected complexity is set
as 60%, CE for different sequences range from 0.36% to
3.38%, and 1.29% on average. Moreover, CE for different
sequences range from 0.36% to 5.09%, and 1.69% on average.
The statistical data show that CE of the proposed method is
quite small, and consistent for different target complexities.
In other words, the proposed complexity control method is
accurate and stable for various sequences and different target
complexities. Therefore, the HEVC encoder can be efficiently
implemented on video-capable devices with different compu-
tational capacities and constrained power by using the pro-
posed complexity control method. The multi-stage complexity
allocation mechanism is largely responsible for the highly
accurate complexity control, because it reasonably allocates
the expected complexity to each coding level.

C. RD Performance of the Proposed Method

The RD performance of the proposed method under differ-
ent target complexities is also provided in Table V. The aver-
age values of BDBR and BDPSNR are 0.41% and -0.018dB,
respectively, when the expected complexity is 80%. The aver-
age values of BDBR and BDPSNR are 1.27% and -0.043dB,
respectively, when the expected complexity is 60%. Further-
more, when the expected complexity is 40%, the average
values of BDBR and BDPSNR are 4.85% and -0.192dB,
respectively. Clearly, when the expected complexity is 40%,
the RD performance of the proposed method is more appro-
priate for high-resolution videos with more static and simple
texture regions (such as Johnny, Vidyo1 and Vidyo3). By con-
trast, when the low-resolution videos contain more motion
and complexity texture regions (such as BasketballPass and
BasketballDrill), the RD performance of the proposed method
decreases slightly. The reason is that the redundant encoding
complexities caused by unnecessary CU checking in videos
with lower resolution and abundant motions are less than
that in videos with higher resolution and simple motions.
To achieve 40% expected complexity, the proposed method
should select the CU decision models with low prediction
accuracy to increase the complexity reduction, which leads
to more RD performance loss. Theoretically, this can be
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TABLE V

PERFORMANCE EVALUATION OF THE PROPOSED METHOD FOR DIFFERENT TARGET COMPLEXITY

Fig. 10. Frame-level objective quality evaluation for the proposed method. (a) BQTerrace (rtarget = 80%) (b) Johnny (rtarget = 60%) (c) RaceHorses
(rtarget = 40%).

explained by the purpose of complexity control. Complexity
control aims to achieve a trade-off between RD performance
and encoding complexity flexibly and efficiently. In this regard,
encoding complexity can be controlled accurately in a wide
range along with expected RD performance degradation.

D. Frame-Level RD Performance of the Proposed Method

In addition to the above two properties, the frame-level
quality and bit consumption of the proposed method are
also evaluated. Fig. 10 shows the frame-level objective qual-
ity comparison for three sequences between the proposed
method and the original HEVC encoder. The frame-level video
quality curves of the proposed method are consistent with
those of the original encoder. It indicates that the proposed
method can efficiently reduce the encoding complexity to
approach the target while maintaining the same video quality.
A comparison of the frame-level bitrate for another three
sequences between the proposed method and original HEVC
platform is shown in Fig. 11. Similarly, the frame-level bitrate

curves of the proposed method basically coincide with those
of the original encoder, which indicates the increase in the
bitrate consumption of our method is negligible. The excellent
frame-level RD performance of the proposed method benefits
from the frame-level complexity allocation mechanism, which
reasonably allocates the complexity budgets according to the
frame-level weight.

E. Comparison of Control Accuracy

The control accuracy of the proposed method is com-
pared with three state-of-the-art complexity control algorithms,
namely Deng-ACCESS [25], Deng-TCSVT [24], and Amaya-
TMM [26]. Three target complexity ratios (80%, 60%, and
40%), which are same as those in the three related studies,
were tested to ensure a fair comparison. In addition, the stan-
dard deviation (denoted as SD) is utilized to evaluate the fluc-
tuation of properties for different methods. The experimental
results are listed in Tables VI-VIII. Clearly, CE and SD of
the proposed method for all expected complexity ratios are
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Fig. 11. Frame-level bitrate evaluation for the proposed method. (a) PartyScene (rtarget = 80%) (b) Vidyo3 (rtarget = 60%) (c) BasketballDrive
(rtarget = 40%).

TABLE VI

PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART ALGORITHMS WITH 80% EXPECTED COMPLEXITY

TABLE VII

PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART ALGORITHMS WITH 60% EXPECTED COMPLEXITY

always the smallest, which indicates the proposed method
outperforms these three state-of-the-art algorithms in terms
of control accuracy. In fact, both Deng-TCSVT and Deng-
ACCESS always encode a CTU from Depth 0 and control the
encoding complexity by only adjusting the maximum CTU
depth, which is inefficient to reasonably utilize the constrained
complexity budgets. As for Amaya-TMM, its complexity
control depends entirely on the feedback mechanism and this

work only employs simple complexity estimation, which is
based on the assumption that each CTU has the same cost
for encoding complexity. By contrast, the proposed method
can achieve the best control accuracy by using the following
strategies: 1) multi-stage complexity allocation, which can
reasonably allocate the expected complexity to each coding
level; 2) CTU-level complexity control, which can achieve
accurate complexity reduction; 3) the feedback mechanism
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TABLE VIII

PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART ALGORITHMS WITH 40% EXPECTED COMPLEXITY

Fig. 12. BDBR versus encoding complexity reduction. (a) BQTerrace (b) ParkScene (c) Johnny (d) FourPeople.

which is utilized to eliminate the complexity control error of
the previous CTUs.

F. Comparison of RD Performance

In Tables VI-VIII, the average values of �BR and �PSNR
for the proposed method with three target complexity ratios
are always the best, which indicates the proposed method is
superior to the state-of-the-art algorithms in terms of RD per-
formance. For Deng-TCSVT, the complexity control strategy
relies entirely on the distortion, and some unreasonable early-
skip results in RD performance loss. Although Deng-ACCESS
introduces a bit map to guarantee the objective quality, the RD
performance loss is still not negligible. The RD performance
of Amaya-TMM degrades rapidly as the expected complexity
ratio decreases, which is mainly because of the lack of an
effective complexity allocation mechanism. By comparison,
the reasonable complexity allocation strategy of the proposed
method achieves the expected complexity by selecting the
appropriate weight for the CU decision model. This approach
maintains the trade-off between RD performance and com-
plexity reduction efficiently and flexibly.

G. Evaluation of Complexity-Bitrate Performance
The increase of bitrate at varying complexity reduction

was evaluated. Fig. 12 plots the complexity-bitrate curves of
four sequences with different resolutions and video contents,

for the proposed method and five other state-of-the-art meth-
ods (denoted as Correa-DCC, Deng-TCSVT, Amaya-TMM,
Grellert-JRTIP, and Zhang-TMM, respectively). Among these
five methods, Correa-DCC [23] is a classical complexity
control method and Grellert-JRTIP [27] achieves complex-
ity control by adjusting the encoding parameters. Zhang-
TMM [29]] is a recent process simplification-based method.
As shown in Fig. 12, the BDBR of the proposed method
for different complexity reductions are always less than
those of other methods, which indicates better compression
efficiency.

H. Performance Evaluation With Various Length of Segment
The length of segment is determined by the number of

GOPs (Z ) in a segment. To investigate the influence of Z
on the overall performance, we perform experiments on two
sequences, KristenAndSara and BQTerrace. Fig. 13 shows
the BDBR and CE variations of the proposed method with
respect to various Z , i.e., 2, 4, 6, 8, and 10. On the one
hand, Z slightly affects the BDBR. On the other hand, CE
varies with different trend for different expected complexity
when Z increases. When Z is quite small, the large number
of updating frames will lead to high complexity overhead and
more control error. In addition, when the proposed method
is configured with a quite large Z , the updating frequency
decrease. Scene variation will reduce the control accuracy.
Therefore, it is necessary to selected appropriate length of
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Fig. 13. Changes in control error and BDBR when the proposed method is
configured with different number of GOPs in a segment.

segment for the proposed method with different expected
complexity. We empirically set Z to 2, 4 and 8 for different
expected complexity configurations. Specifically, Z are set to
2, 4, and 8 when the expected complexity ratio rT arget satisfies
the conditions, 40% ≤ rT arget < 60%, 60% ≤ rT arget < 80%,
and 80% ≤ rT arget ≤ 100%, respectively.

VI. CONCLUSION

In this article, we propose an online learning-based multi-
stage complexity control method to achieve a tunable trade-off
between encoding complexity and RD performance for effi-
ciently implementing HEVC on live video applications with
different computing capacities and constrained power. The
novelty of this approach lies in that the random forest-based
CU decision model can adaptively address the problem of
complexity control and the encoder can achieve good RD per-
formance under the given constrained complexity. Moreover,
the multi-stage complexity allocation strategy is well designed
to reasonably allocate the encoding complexity to each coding
level for obtaining a better control accuracy. The experimental
results confirmed that the proposed method outperforms state-
of-the-art approaches in terms of complexity control accuracy
and RD performance. In future, we plan to apply the machine-
learning-based multi-accuracy CU decision model into HEVC
intra coding for industrial video applications.
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